

p̄ Note #393

Effects of the Systematic Errors in Quadrupoles

S. Ohnuma

July 25, 1984

July 25, 1984

To:

Fred Mills

From:

Sho Ohnuma

Effects of the Systematic Errors in Quadrupoles

In the accumulator, five types of small-aperture quadrupoles and four types of large-aperture quadrupoles are used and they are in four groups as far as the excitation currents are concerned.

•	SQA	<u>SQB</u>	<u>sqc</u>	SQD	SQE	LQA	<u>LQB</u>	<u>LQC</u>	<u>LQD</u>
Group	1.	Q1f	Q3f		Q2d				
	2. Q4f &Q8f		Q6f	•					•
	3. Q9d		. 04q	Q5d		•		•	
	4.					Q10f	Q14f	Q12d &Q13d	Qllf

(f = horizontal focus; d = horizontal defocus)

Eighteen magnets in group 3 have individual shunts and their strength can be adjusted by as much as 1% or more. In other groups, all magnets share the same excitation currents and the <u>systematic</u> errors in their $\int G \cdot d\ell$ may lead to errors in the linear lattice functions. We are especially interested in the errors $\Delta\beta/\beta$ and $\Delta\eta$ (dispersion function) at AlO, A2O, etc., i.e., at the center of long straight sections. Because of the mirror symmetry of our lattice, α and η' are always zero at these points. (In the real accumulator, they are of course not exactly zero because of the symmetry-breaking random errors.)

I have evaluated the change ($\Delta\beta/\beta$) and $\Delta\eta$ which are proportional to the fractional error ϵ of each type of quadrupoles:

$$\varepsilon \equiv (\Delta \int G \cdot d\ell)/(\int G \cdot d\ell)$$

Group #1 Adjust the current so that ∫G·dl of SQE(Q2) takes the correct value.

$$\frac{\ell_{\text{eff}}(\text{SQB})}{\ell_{\text{eff}}(\text{SQE})} = \frac{25.2"}{51.64"}(1+\epsilon_{\text{B}}); \quad \frac{\ell_{\text{eff}}(\text{SQC})}{\ell_{\text{eff}}(\text{SQE})} = \frac{27.6"}{51.64"}(1+\epsilon_{\text{C}})$$

At A10,30,50:
$$\Delta \beta_x/\beta_x = -3.50\epsilon_B -4.45\epsilon_C$$

 $\Delta \beta_y/\beta_y = 4.35\epsilon_B +4.09\epsilon_C$
 $\Delta \eta = 0$.

At A20,40,60:
$$\Delta \beta_x / \beta_x = 0.34 \epsilon_B + 3.50 \epsilon_C$$

 $\Delta \beta_y / \beta_y = 0.69 \epsilon_B + 1.85 \epsilon_C$
 $\Delta \eta = 0.$

Group #2 Adjust the current so that $\int G \cdot d\ell$ of SQC(Q6) takes the correct value.

$$\frac{\ell_{eff}(SQA)}{\ell_{eff}(SQC)} = \frac{18"}{27.6"} (1+\epsilon_A)$$

At A10,30,50:
$$\Delta \beta_{\rm X}/\beta_{\rm X} = 0.31 \epsilon_{\rm A}$$
, $\Delta \beta_{\rm y}/\beta_{\rm y} = -3.00 \epsilon_{\rm A}$, $\Delta \eta = -1.13 \epsilon_{\rm A} ({\rm meters})$
At A20,40,60: $= 5.10 \epsilon_{\rm A}$ $= -1.17 \epsilon_{\rm A}$ $= -0.05 \epsilon_{\rm A} ({\rm meters})$

Group #4 Adjust the current so that ∫G·dl of LQC(Q12 & Q13) takes the correct value.

$$\frac{\ell_{\text{eff}}(\text{LQA})}{\ell_{\text{eff}}(\text{LQC})} \equiv \frac{14.4"}{30.4"} (1+\epsilon_{\text{A}}); \quad \frac{\ell_{\text{eff}}(\text{LQB})}{\ell_{\text{eff}}(\text{LQC})} \equiv \frac{25.3"}{30.4"} (1+\epsilon_{\text{B}}); \quad \frac{\ell_{\text{eff}}(\text{LQD})}{\ell_{\text{eff}}(\text{LQC})} \equiv \frac{34.4"}{30.4"} (1+\epsilon_{\text{D}})$$

At A10,30,50:
$$\Delta \beta_x / \beta_x = 1.47 \epsilon_A + 0.24 \epsilon_B + 4.87 \epsilon_D$$

 $\Delta \beta_y / \beta_y = 0.24 \epsilon_A + 0.38 \epsilon_B + 2.01 \epsilon_D$

$$\Delta \eta = -2.08 \epsilon_A -21.50 \epsilon_B -28.69 \epsilon_D \text{ (meters)}$$

At A20,40,60:
$$\Delta \beta_{x}/\beta_{x} = -0.43\epsilon_{A} -3.03\epsilon_{B} -5.70\epsilon_{D}$$

$$\Delta \beta_{y}/\beta_{y} = -0.09\epsilon_{A} +3.55\epsilon_{B} +4.36\epsilon_{B}$$

$$\Delta \eta_{x} = -6.13\epsilon_{A} -31.10\epsilon_{B} -54.79\epsilon_{D} \text{ (in meters)}$$